Positivity-preserving Lagrangian scheme for multi-material compressible flow

نویسندگان

  • Juan Cheng
  • Chi-Wang Shu
چکیده

Robustness of numerical methods has attracted an increasing interest in the community of computational fluid dynamics. One mathematical aspect of robustness for numerical methods is the positivity-preserving property. At high Mach numbers or for flows near vacuum, solving the conservative Euler equations may generate negative density or internal energy numerically, which may lead to nonlinear instability and crash of the code. This difficulty is particularly profound for high order methods, for multi-material flows and for problems with moving meshes, such as the Lagrangian methods. In this paper, we construct both first order and uniformly high order accurate conservative Lagrangian schemes which preserve positivity of physically positive variables such as density and internal energy in the simulation of compressible multi-material flows with general equations of state (EOS). We first develop a positivity-preserving approximate Riemann solver for the Lagrangian scheme solving compressible Euler equations with both ideal and non ideal EOS. Then we design a class of high order positivity-preserving and conservative Lagrangian schemes by using the essentially non-oscillatory (ENO) reconstruction, the strong stability preserving (SSP) high order time discretizations and the positivity-preserving scaling limiter which can be proven to maintain conservation and uniformly high order accuracy and is easy to implement. Onedimensional and two-dimensional numerical tests for the positivity-preserving Lagrangian schemes are provided to demonstrate the effectiveness of these methods. AMS subject classification: 65M08, 76N15

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-preserving and symmetry-preserving Lagrangian schemes for compressible Euler equations in cylindrical coordinates

For a Lagrangian scheme defined in the cylindrical coordinates, two important issues are whether the scheme can maintain spherical symmetry (symmetry-preserving) and whether the scheme can maintain positivity of density and internal energy (positivity-preserving). While there were previous results in the literature either for symmetry-preserving in the cylindrical coordinates or for positivity-...

متن کامل

Positivity-preserving cell-centered Lagrangian schemes for multi-material compressible flows: From first-order to high-orders. Part I: The one-dimensional case

One of the main issues in the field of numerical schemes is to ally robustness with accuracy. Considering gas dynamics, numerical approximations may generate negative density or pressure, which may lead to nonlinear instability and crash of the code. This phenomenon is even more critical using a Lagrangian formalism, the grid moving and being deformed during the calculation. Furthermore, most o...

متن کامل

Numerical Investigation on Compressible Flow Characteristics in Axial Compressors Using a Multi Block Finite Volume Scheme

An unsteady two-dimensional numerical investigation was performed on the viscous flow passing through a multi-blade cascade. A Cartesian finite-volume approach was employed and it was linked to Van-Leer's and Roe's flux splitting schemes to evaluate inviscid flux terms. To prevent the oscillatory behavior of numerical results and to increase the accuracy, Monotonic Upstream Scheme for Conservat...

متن کامل

A multi-material flow solver for high speed compressible flows

This paper describes a three-dimensional Eulerian-Lagrangian method for the modeling and simulation of high-speed multi-material dynamics. The equations for conservation of mass, momentum, and energy are solved on a fixed Cartesian grid using a fully conservative higher order MUSCL scheme. The dilatational response of each material is handled using a suitable equation of state. The embedded int...

متن کامل

Large time-step positivity-preserving method for multiphase flows

Using a relaxation strategy in a Lagrangian-Eulerian formulation, we propose a scheme in local conservation form for approximating weak solutions of complex compressible flows involving wave speeds of different orders of magnitude. Explicit time integration is performed on slow transport waves for the sake of accuracy while fast acoustic waves are dealt with implicitly to enable large time step...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 257  شماره 

صفحات  -

تاریخ انتشار 2014